A Lithium-Ion Polymer Battery used to power a mobile phone |
|
specific energy | 130–200 W·h/kg |
---|---|
energy density | 300 W·h/L |
specific power | up to 7.1 kW/kg |
Charge/discharge efficiency | 99.8% |
Energy/consumer-price | 2.8–5 W·h/US$ |
Self-discharge rate | 5%/month |
Time durability | 24–36 months |
Cycle durability | >1000 cycles |
Nominal cell voltage | 3.7 V |
Lithium-ion polymer batteries, polymer lithium ion, or more commonly lithium polymer batteries (abbreviated Li-poly, Li-Pol, LiPo, LIP, PLI or LiP) are rechargeable batteries (secondary cell batteries). Normally batteries are composed of several identical secondary cells in parallel addition to increase the discharge current capability.
Contents |
This type has technologically evolved from Lithium-ion batteries. The primary difference is that the lithium-salt electrolyte is not held in an organic solvent but in a solid polymer composite such as polyethylene oxide or polyacrylonitrile. The advantages of Li-ion polymer over the lithium-ion design include potentially lower cost of manufacture, adaptability to a wide variety of packaging shapes, reliability, and ruggedness. Lithium-ion polymer batteries started appearing in consumer electronics around 1995.
Cells sold today as polymer batteries are pouch cells. Unlike lithium-ion cylindrical cells, which have a rigid metal case, pouch cells have a flexible, foil-type (polymer laminate) case. In cylindrical cells, the rigid case presses the electrodes and the separator onto each other; whereas in polymer cells this external pressure is not required (or often used) because the electrode sheets and the separator sheets are laminated onto each other.
Since individual pouch cells have no strong metal casing, by themselves they are over 20% lighter than equivalent cylindrical cells. However, all Li-Ion cells expand at high levels of state of charge (SOC); if uncontained, this may result in delamination, and reduction of reliability and cycle life; the case of cylindrical cells provides that containment, while pouch cells, by themselves, are not contained. Therefore, to achieve the rated performance, a battery composed of pouch cells must include an overall, strong, external casing to retain its shape.[1]
The voltage of a Li-poly cell varies from about 2.7 V (discharged) to about 4.23 V (fully charged), and Li-poly cells have to be protected from overcharge by limiting the applied voltage to no more than 4.235 V per cell used in a series combination. Overcharging a Li-poly battery can cause an explosion or fire. During discharge on load, the load has to be removed as soon as the voltage drops below approximately 3.0 V per cell (used in a series combination), or else the battery will subsequently no longer accept a full charge and may experience problems holding voltage under load. Li-poly batteries can be protected by circuitry that prevents over-charge and deep-discharge as with other lithium-ion batteries, which are also harmed by under-voltage and over-voltage.
Early in its development, lithium polymer technology had problems with internal resistance. Other challenges include longer charge times and slower maximum discharge rates compared to more mature technologies. Li-poly batteries typically require more than an hour for a full charge. Recent design improvements have increased maximum discharge currents from two times to 15 or even 30 times the cell capacity (discharge rate in amperes, cell capacity in ampere-hours). In December 2007 Toshiba announced a new design offering a much faster rate of charge (about 5 minutes to reach 90%). These cells were released onto the market in March 2008 and are expected to have a dramatic effect on the power tool and electric vehicle industries, and a major effect on consumer electronics.[2]
When compared to the lithium-ion battery, Li-poly has a greater life cycle degradation rate. However, in recent years, manufacturers have been declaring upwards of 500 charge-discharge cycles before the capacity drops to 80% (see Sanyo). Another variant of Li-poly cells, the "thin film rechargeable lithium battery", has been shown to provide more than 10,000 cycles.
A compelling advantage of Li-poly cells is that manufacturers can shape the battery almost however they please, which can be important to mobile phone manufacturers constantly working on smaller, thinner, and lighter phones.
Li-poly batteries are also gaining favor in the world of radio-controlled aircraft as well as radio-controlled cars, where the advantages of both lower weight and greatly increased run times can be sufficient justification for the price. Some airsoft gun owners have switched to LiPo batteries due to the above reasons and the increased rate of fire they provide. However, lithium polymer-specific chargers are required in order to avoid fire and explosion. Explosions can also occur if the battery is short-circuited, as tremendous current passes through the cell in an instant. Radio-control enthusiasts take special precautions to ensure their battery leads are properly connected and insulated. Furthermore fires can occur if the cell or pack is punctured. Radio-controlled car batteries are often protected by durable plastic cases to prevent puncture. Specially designed electronic motor speed controls are used to prevent excessive discharge and subsequent battery damage. This is achieved using a low voltage cutoff (LVC) setting that is adjusted to maintain cell voltage greater than (typically) 3 V per cell.
Li-poly batteries are also gaining ground in PDAs and laptop computers, such as Apple's MacBook family, Amazon's Kindle, Lenovo's Thinkpad X300 and Ultrabay Batteries, the OQO series of palmtops, the HP Mini and Dell products featuring D-bay batteries. They can be found in small digital music devices such as iPods, Zunes, and other MP3 players and the Apple iPhone and iPad, as well as gaming equipment like Sony's PlayStation 3 wireless controllers. They are desirable in applications where small form factors and energy density outweigh cost considerations.
These batteries may also power the next generation of battery electric vehicles. The cost of an electric car of this type is prohibitive, but proponents argue that with increased production, the cost of Li-poly batteries will go down.
Hyundai Motor Company uses this battery type in some of its hybrid electric vehicles.[3] On October 26, 2010, a Li-poly powered Audi A2 covered the record distance of 600 km without recharging.[4]
There are currently two commercialized technologies, both lithium-ion-polymer (where "polymer" stands for "polymer electrolyte/separator") cells. These are collectively referred to as "polymer electrolyte batteries".
The battery is constructed as:
Typical reaction:
Polymer electrolytes/separators can be solid polymers (e.g., polyethyleneoxide, PEO) plus LiPF6, or other conducting salts plus SiO2, or other fillers for better mechanical properties (such systems are not available commercially yet). Some manufacturers like Avestor (since merged with Batscap) are using metallic Li as the positive electrode (these are the lithium-metal polymer batteries), whereas others wish to go with the proven safe carbon intercalation positive electrode.
Both currently commercialized technologies use PVdF (a polymer) gelled with conventional solvents and salts, like EC/DMC/DEC. The difference between the two technologies is that one (Bellcore/Telcordia technology) uses LiMn2O4 as the negative electrode, and the other the more conventional LiCoO2.
Other, more exotic (although not yet commercially available) Li-polymer batteries use a polymer negative electrode. For example, Moltech is developing a battery with a plastic conducting carbon-sulfur negative electrode. However, as of 2005 this technology seems to have had problems with self-discharge and manufacturing cost.
Yet another proposal is to use organic sulfur-containing compounds for the negative electrode in combination with an electrically conductive polymer such as polyaniline. This approach promises high power capability (i.e., low internal resistance) and high discharge capacity, but has problems with cycleability and cost.
Analog front ends that balance cells and eliminate mismatches of cells in series or parallel significantly improve battery efficiency and increase the overall pack capacity. As the number of cells and load currents increase, the potential for mismatch also increases. There are two kinds of mismatch in the pack: state of charge (SOC) and capacity/energy (C/E) mismatch. Though the SOC mismatch is more common, each problem limits the pack capacity (mA·h) to the capacity of the weakest cell.
Battery pack cells are balanced when all the cells in the battery pack meet two conditions:
LiPoly batteries must be charged carefully. The basic process is to charge at constant current until each cell reaches 4.2 V; the charger must then gradually reduce the charge current while holding the cell voltage at 4.2 V until the charge current has dropped to a small percentage of the initial charge rate, at which point the battery is considered 100% charged. Some manufacturers specify 2%, others 3%, but other values are also possible. The difference in achieved capacity is minute.
Balance charging simply means that the charger monitors the voltage of each cell in a pack and varies the charge on a per-cell basis so that all cells are brought to the same voltage.
Trickle charging is not recommended for lithium batteries.[5] Most manufacturers claim a maximum and minimum voltage of 4.23 and 3.0 volts per cell. Taking any cell outside these limits can reduce the cell's capacity and ability to deliver full rated current.
Most dedicated lithium polymer chargers use a charge timer for safety; this cuts the charge after a predefined time (typically 90 minutes).
Unlike certain other types of batteries, lithium polymer batteries can be stored for one or two months without significantly losing charge. However, if storing for long periods, manufacturers recommend discharging the battery to 50% of full charge.[6][7] In addition, other sources recommend refrigerating (but not freezing) the cell.[8]
As these lithium polymer batteries first emerged in the market, they were expensive. Now that the prices are lower, they are used in a variety of devices from R/C models to mobile devices. The major risk factor is the volatility. When punctured, Li-po batteries react quickly by smoking and causing large fires.
While charging the lithium polymer batteries, the individual cells in the pack should be charged evenly. For this purpose, the cells are to be charged with special chargers. This entails special care while charging the batteries in addition to incurring expenses on procuring the chargers specific to lithium polymer batteries.
Lithium polymer batteries cannot be deep discharged. Once they are deep-discharged, they can be damaged and cannot be charged to their normal capacity. Even while discharging, care has to be taken to discharge the pack evenly.